Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.21.517375

ABSTRACT

The process of finding molecules that bind to a target protein is a challenging first step in drug discovery. Crystallographic fragment screening is a strategy based on elucidating binding modes of small polar compounds and then building potency by expanding or merging them. Recent advances in high-throughput crystallography enable screening of large fragment libraries, reading out dense ensembles of fragments spanning the binding site. However, fragments typically have low affinity thus the road to potency is often long and fraught with false starts. Here, we take advantage of high-throughput crystallography to reframe fragment-based hit discovery as a denoising problem – identifying significant pharmacophore distributions from a fragment ensemble amid noise due to weak binders – and employ an unsupervised machine learning method to tackle this problem. Our method screens potential molecules by evaluating whether they recapitulate those fragment-derived pharmacophore distributions. We retrospectively validated our approach on an open science campaign against SARS-CoV-2 main protease (Mpro), showing that our method can distinguish active compounds from inactive ones using only structural data of fragment-protein complexes, without any activity data. Further, we prospectively found novel hits for Mpro and the Mac1 domain of SARS-CoV-2 non-structural protein 3. More broadly, our results demonstrate how unsupervised machine learning helps interpret high throughput crystallography data to rapidly discover of potent chemical modulators of protein function.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.27.497816

ABSTRACT

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, few have been described. Here, we report the structure-based development of several chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution X-ray protein crystallography, and binding evaluation with in-solution assays. Potent scaffolds were designed with in silico linkage of previously obtained fragment hits and ultra-large library docking screens of more than 450 million molecules. In total, 160 hits comprising 119 different scaffolds were discovered and 152 Mac1-ligand complex crystal structures were determined, typically to 1 [A] resolution or better. The structure-activity-relationships emerging from this study may template future drug development against Mac1.


Subject(s)
Coronavirus Infections
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.24.393405

ABSTRACT

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL